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ABSTRACT

The flow of the classical linearly viscous fluid between two infinite

parallel planes rotating with constant (but different) angular velocities

about a common axis has received a great deal of attention during the past 60

years (cf. Parter 112]). However, until recently the emphasis has been on

solutions which are axi-symmetric. Recently, Berker (3] in his study of the

flow between parallel planes. rotating with the same constant angular

velocities about a common axis exhibited a one parameter family of solutions

only one of which is axi-symmetric. In this study, .e exhibit the existence

of a one parameter family of solutions (for 4large viscosities) when the

planes are rotating with constant but different angular velocities about a

common axis or about non-coincident axes.

\
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SIGNIFICANCE AND EXPLANATION

The flow between parallel planes rotating with constant (but different)

angular velocities about a common axis was first studied by Batchelor [2]

instigated by an earlier study of von Karman (9] in 1923 and it has been the

object of considerable analysis ever since then. The Karman assumptions,

which has always been employed in studying the problem, leads to solutions

which are axi-symmetric. In this study we show that the classical solutions

are imbedded in a one parameter family of solutions which are basically non-

symmetric and hence the classical solutions are not "isolated" or "stable".

These results which seem to arise due to the unboundedness of the flow domain

lead one to question the meaning and validity of the study of the above

boundary value problem. Similar one parameter family of solutions are shown

to exist in the case of the flow of rotating planes of constant but differing

angular velocities about non-coincident axes. Accession For
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MEARKS ON THE FLOW BETWEEN TWO

PARALLEL ROTATING PLATES

Seymour V. Parter and K. R. Rajagopal

Introduction

Let Hl and H1 be two infinite planes parallel to the (x,y) plane, say n i

the plane z =-1 while H is the plane z -1. Let a '#O be a fixed constant and

suppose that I rotates about a point (x - 0, y - -a/2, z - -1) with constant angular

velocity Q- while K 2 rotates about the point (x-0, y - +a/2, x - 1) with constant

angular velocity 0+1. We suppose a classical incompressible fluid fills the infinite

space between theme plane. and we seek steady state solutions of the Navier-Stokes

equation which describe the fluid flow.

Finally, we mlake the basic assuption that

1.1)us - -H(s),

that is, the component of velocity in the s direction is a function of z alone.

If a - 0 and we also assume that the flow is axi-symetric then the basic theory of

von Karmen (91 and Batchelor (21 leads to the following conclusionst

Sponsored by the United States Army under Contract No. DAA29-0-C-0041.



1.2) U -- .() r (x2+y 2 )/2
r 2

1.3) U= G(s)

where the functions <G(Z),H(z)> are solutions of the boundary-value problem

1.4a) CH
l
v + HH"' + GG' - 0, -1 4 z 4 1

1.4b) zG'' + HG' - H'G = 0, -1 4 z 4 1

and

1.Sa) H(-1,c) - H(C1,) - 0 (no penetration)

1.5b) H'(1,C) = 0 (no slip)

1.Sc) G(-1,C) - 20 1 G(1,£) - 20 +1

where the positive parameter e > 0 is related to the bulk viscosity

This boundary value problem has been studied at great length There are many

numerical studies and many formal asymptotic studies. There are also rigorous existence

theorems

(i) for e >> 1 by Hastings [8] end 2lcrat (6],

(i) for Q-I = -+ + 0 and all C > 0 by McLeod and Parter (11],

(iii) for 0 < e << 1 by Kreiss and Parter [10].

The recent survey article (12] contains a reasonably up-to-date discussion of this

problem.

When n -1 - 0 +1 + 0 there is one special solution (not the only solution-see [3]):

the rigid body rotation given by

1.6) H(z,) - 0, G(z,) - 201.

It is not difficult to verify (S], (18]) that this solution is "stable" and "isolated"

relative to the von Karman equations (1.4), (1.S). By "isolated" we mean there is a

neighborhood of this solution wherein there are no other solutions, and by "stable" we

mean there is no bifurcation from this solution, in particular the linearized problem at

this solution is non-singular. On the other hand, Berker [3] has constructed a one

parameter family of solutions to the general steady Navier-Stokes equation which includes

the rigid body motion. The rigid body motion in the only axisymmetric solution that

' J -2-
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belongs to Berker's (3] family. In Cartesian coordinates his solution takes the form (we

have set 0- + 1).

1.7) Ux " -[y-g(zl], U [ 1x-flzl], Uz  0

where

1.8a) f(z) -t [(*z)-#(a)] -X" [X(z)-x,)jf,

A1.8b) g,.1- I [,, w -4,1m [X,,]-X,,I31,
with

1.9a) #(z) = coshmz * cosmz,

1.9b) X(z) - sinhmz - sin--,
1

1.9c) m- ()1

1.9d) A - [1-4m(1)] 2 + X(
1 )] 2 = (coshm-cosm)

2

while £ is an arbitrary positive constant. Observe that (1.7) shows that this solution

satisfies the basic ansats (1.1).

The case a + 0 and Q_1 - +1 . 9 has relevance to the flow occurring in the

orthogonal rheometer, an instrument that is employed in determining the material moduli

which characterise non-Newtonian fluids. Recently, Rajagopal [13] has studied the flow of

general simple fluids in such a domain and Rajagopal and Gupta 115], and Rajagopal and

Wineman (17] have established exact solutions to the problem for certain non-Newtonian

fluids. Rajagopal and Gupta [16] have also established a one parameter family of exact

4 solution for an incompressible homogeneous fluid of second grade when a - 0 and

1.- 9+1 - 9.

When a =0 and 21 = 1+1 the solution corresponding to the usual Karman ansatz

leads to exactly one of the solutions in Berker's (3] one parameter family, namely the

rigid motion which is axi-symetric. In the case a + 0, and 0_1 . 1+1 an exact

solution has been obtained for the classical incompressible fluid by Abbot and Walters

More recently, Goddard 17] has also established results which are similar to those in
[13).113]. .-3-
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(1]. The existence of such a solution is implied in an earlier analysis of erker [4].

This motivates us to look for a more general class of solutions to the Karman problem (and

to the corresponding problem when a + 0) which would reduce to the class of non-

axisymmitric solutions exhibited by Berker [3) Thus, we seek a solution - for classical

incompressible fluids - which, in Cartesian coordinates - take the form

1.10a) U - - G(z)Y + g(c)
x 2 2lz)

1.10b) U -y H') + G x - f(z)y 22

1.10c) U = -H(z).
z

In cylindrical coordinates this velocity field takes the form

1.11a) V - (z) + g(z) cos e - f(z) sin e,

1.11b) Ve -. G(z) - gz) sin e - f(z) cos e,

1.11c) V = -H(z)3

Observe that, if H - 0 and G = 20 we have a velocity field of the form described by

Berker. And, if f = g - 0 we have a velocity field of the form described by von Karman.

As we shom in section 2, there is a solution of the steady state Navier-Stokes

equations of the form (1.10) [or (1.11)] if and only if the functions H(W), G(z), g(z),

f(z) are solutions of the boundary-value problem
ivi

1.12a) C + H''' + GGI - 0, -1 4 s 4 1

1.12b) CG'' + HG' - H'G - 0, -1 ( z 4 1

1.13a) ef''' + Hf' +
1
/2H'f' -

1
/2H''f +1/2 (Gg)' - 0

1.13b) eg'"' + Hg"' + 1/2 ,g' - 1/2 g -1/2 (Gf)' - 0

1.14a) W(-1,C) - e(1,:) - 0, (no penetration),

1.14b) S'(-1,) - H'(1,6) - 0 , (no slip),

1.14) G(-1,e) - 20-1" G(1,) - 20+1

1.1s) fV-1,) - fWoe) - 0, g(-1,) - -a .1/2, gWo) a+1 /2

We note that equations (1.12) with boundary conditions (1.14) are exactly the

nonlinear von Karman equations for axially symmetric swirling flow for functions

< Vs,), G(x,¢) > while the equations (1.13) with boundary conditions (1.15) are linear

-4-
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equations for < f(z,c), g(z,e) > with coefficients depending on < H(ze), G(U,C) >

which reflect the asymetry and the possible displacement of the centers of rotation of

the bounding planes. Moreover, given OH(z,C), G(z,E)> the

of two third order equations with only four boundary conditions. Whenever, there is a

solution of the von Kerman equations one can ask two questions:

(i) in the case when a - 0, is the axi-symmetric flow imbedded in a continuous one

parameter family of more general solutions?

(ii) When a + 0, does this axi-symmetric flow form the basis for a one parameter

family of solutions of the problem for rotations about different centers?

In case i) this is a homogeneous underdetermined system and the answer is yest We need

merely coasider the additional condition

1.16) f'(-1) - g'C-1) = 0.

If this augmented homogeneous problem has a non-trivial solution

<f(s,C), g(z,C)> + <0,0>, then <1f(z,), tg(z,e)> is also a solution for every real

number 1. On the other hand, if the system (1.13), (1.15), (1.16) does not have a

nontrivial solution then the problem given by (1.13), (1.15) and

1.17) f'(-1) - I, g'(-1) 0

yields a unique solution <f(z,c,1), g(zec,)> of the form

<f(z,Ce1), g(z,e,L)> = <%f(z,c,1), Lg(z,C,1)>.

This simple result has the following important consequence. In the classical case of two

infinite parallel planes rotating about a comimon axis, (i.e., a - 0) whenever there is a

solution of the von Rarman equations (12), (14), this axi-symmetric flow is imbedded in a

one-parameter family of solutions of the full Navier-Stokes equations. Thus, despite the

intense interest in the von Karman problem within the class of all solutions of the

avir-Stokes equations, these special solutions are "unstable". While it seem likely

that a similar simple argument settles the matter for case (ii), it is not apparent.

In either case one can ask a more subtle question: can we find a family

<f(s,e,L), g(z,t,t)> which is continuous in both c and Z and (at the same time) has4 -5-
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the geometric significance of the Berker solution for the special cage Q_1 a +1 + 0?

in other words, can we find solutions of (1.12), (1.13), (1.14), (1.15) and

1.8)g(O,€,C) 0 , f(OCO) I .

Since the system (1.13), (1.15) is linear, the answer is 'yen' for proble (i) if and

only if it is also 'yen' for problem (ii).

In section 3 we answer these questions in the affirmative for rge C. While this

result is an immediate consequence of the implicit function theorem (applied at E -)

we will give a complete proof.

2. Zquations of Notion

In this discussion we follow the outline of the argument given in [12, section 2]. A

velocity field of the form (1.10) satisfies

2.1) div U - 1 / 2 H'( ) + 1/2aR'(z) - H'(z) - 0.

Thus, the basic constraint of the Havier-Stokes equations is satisfied. We now turn to

the equation

2.2) PAu - pu*Vu - Vp

where P denotes the viscosity, p the density, and p is the pressure. We eliminate

the pressure by taking the curl of both sides of (2.2) and obtain

2.3) PAW- p(WxU) - 0

where

2.3b) W - curl U.

A detailed calculation now yields

'iv 2.4) AU=-i{1UHiv +!G 1+ (-a -
1  

.+ +k("-2 2 2 2 2 2 +{G

4 ,while

Wx U ((GH')'- (G'B)@] X [GG' + Hm'''j + j - (fH')' (f'H)'
2 2 4 4 +

1'

I-I-
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2.5) + [ GG' +. IUI''' + Y twG')' (GiI').) ~ (GfP' +W) '(g H)'I22 + 4 + 4 2

+ k{GH - HG'I

On equating the coefficients of k in (2.3a) we obtain

2.6a) Gee + HG' - H'G -0.

On equating the coefficients of i x we obtain

G-1+ (HG')' -HG)' - 0

which also follows from (2 6a). On equating the coefficients of *j y we obtain

2.6b) H iv + HE''' + GG' - 0.

Finally, the zeroth order torus in the coefficient of i yield

2.6c) Pfell + (Hf')' - 1 /2 (H'f)' +112 (Gg)' - 0.

The coefficients of I, .ay and I yield the final equation

2.6d) R 9'lo + (Hg')' -112 (j'g)' +1/2 (Gf)' - 0.

Thus we have established the equations (1.12) and (1.13) with

We now turn to the boundary conditions. For our inmediate purposes it would be

sufficient to iqpose the conditions (1.4) and (1.5) and observe that the velocity field

(1.10) now satisfies the steady-state Wavier-Stokes equations and the boundary conditions

4 of our problem. However, it is somewhat more satisfying to proceed as follows. 9quation

01.11c0 and the "no penetration" condition implies that

2.7a) H(-1,E) - 901,C) -0

Equation 01.11b) and the boundary conditions

V (r,O,*1) - )a~

yield

Lin V I9*) a -1

H ce r a r 2
8 r 6 * ) - ~ jG*)

2.7b) G(-1,e) -20~t G(1,0 - 22

-7-



rhus, we have obtained the boundary conditions (1.14). Now, using (1.11b) and letting

r + 0 with a judicious choice of 0 we obtain the boundary conditions (1.15).

3. Existence for large e >>1

In this section we present what is essentially a standard argument for regular

perturbation problem. The argument is given in some detail because we wish to emphasize

the following facts.

i) There is an e >> I and, for All e ) 0 there is a solution of the0 o

von Karman problem (1.4), (1.5). Moreover, this solution is continuous in c. Hence,

thare is a curve of solutions and there is no local bifurcation of solutions of the von

Karmen equation from this curve. Again, within the set of solutions of the .,rman

equations, for fixed c ) co , each of these solutions is isolated.

(ii) Nevertheless, in this same range of c there is a solution of full system

(1.12)-(1.15): a one parameter family of solutions <H(x,c), G(x,£), f(x,£ xct)>

which includes (for I - 0) the axl-symetric von Raruan solution. Moreover, if

C and L are both fixed, this solution is an isolated stable solution. Of course,

with a > 0 these solutions provide a one parameter family of solutions of the problem of

rotation about different centers.

Our first goal is to show that in the case of the von Karman equations a relatively

simple Picard iteration scheme converges for e W1 and - in the nature of things, the

solutions so obtained are continuous in R - 1/C.

Definition: Let f e C [-1,11 , k 0. Then

k

is- k Max(If C) (x)l: -1 • x 4 1)
:I0

Lese 3.1: Consider the two boundary value problems:

3.1a) *(4) f, -1 ( x 4 1

a-d-/t
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3.1b) ((*1) 0 (*l) ,

3.2a) = g, -1 e x • 1

3.2b) *(-1) = 22_1  * (1) - 20+1"

There is a constant K ) I such that0

3.3a) 1014 4 KolfSo

3.3b) 1*12 4 KIgl o + 210_ 1 +21+111

Proof: Direct integration.

Let 0_1 and Q+1 be given. Let

3.4a) a - 20K [10 11+19+11] + 1

1 13.4b) R - I o

0

Let

3.Sa) R 0,0

3.Sb) G o  - 1 

and consider the iterative scheme

3.6a) H -R[HHk + GG]K+I c c

3.6b) H k+l(*l) - k+l(*l) - 0

3,7a) Gk.1 = R[.kGk - k~k3

3.7b) G K+l(-I) = 2n1, G k+l(1) 2+1

Lema 3.2: If

3.8a) I1,l4 • a, IGkl 2 ( a.

Then

3.8b) a (a and I G I -0.3.b % 4 k+1 2

proof: From the definition of Ko we have

2K 2

3.9a) III 1 C2K IW
2 1 (a

k+l14 0 16K a 8

-9-
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and KG oc K [2RU +21012 1
Gk+i 12 c' f 1  +l 1H

2K 2 K[IGIII

16K a o - t

That is

3.9b) KGk+1 -C Re+ E1-<a'

Len 3.3: Suppose

3.10) 'KHk 4 -C a, 1 Gkc 12 - C 0, 1,

Then, for kc o 1

3.11) (IN + -H kI + KG k -G kI ) oc/4 ( K-'k1+Gk-G K-

Prof ( H ) IV- -R{(H -H )H''' + Rk-iI-
k Ic kk k-I I

+ G'Ic(G c-G~c + Gc (G*-Gc )

IH k+ -H k14o KR- (%k-c1'4 + IG - Gk ')

I (IS -H I + KGG I 1
a kc kI -4 kIc Ic- 2

Thus

(3.12a) in 4 f,
4 1 {1 (i-H I + IGk - G I.

k+1 -' 4 Ic-i 4 Ic I-i 2

4 And
(G -G )=R C (H-H ) (G -G )H~

Ic+I Ic Ic I-I)G +c kc I- Ic-i

(H -H *G-G-Go )H ]

Hence KG -G 1 (42 K TtOEIK -H I + kG - G% i l2
kIc~ k 2 o I Ic4 c -

3.1i2b)

.9 ['
3 Ic -1'~ 4 + I Gkc-GclI 2 l*



Adding (3.12a) and (3.12b) gives the desired result
1 1

Theorem 3.1: If R ( RO . I
£ o 16X C

0
a- 20 K [IQ 1 + ID+ i) + 1.

Then the iterative procedure (3.5)-(3.7) converges to an isolated solution

1
< R(xe), G(x,t)> which is continuous in c for c ) --

R
0

Proof: The proof is now a standard argument based on the estimates of lema 3.2 and

laema 3.3.

We now turn to the linear equations (1.13) with boundary conditions (1.15).

Lema 3.4: Consider the mlti-point problem

3.13a) v't - F, -1 4 x 4 1

3.13b) v(-1) t A, v(1) t 3, V(0) = c.

Let (x) be the triple integral of F, i,e
x y t

(x) - f dy f dt f r(s)ds.
-1 -1 -1

Then, the solution of (3.13a), (3.13b) Is given by

0 2
3.14a) v(x) - A + a(x+l) + i (x+l) + (x)

where

3.14b - 2c - 1/2 _ 2 (0) +1/ (1)
2

3.14c) -* (B+A-2C) + 2 (0) - (1)

Proof: direct verification.

Corollary 3.4: There is a constant K1  such that

; 3.15) Ivi o K XlIAI+lIl+ICI+IP o I'1 i Given <H(x,e), G(x,e) > for c c Co let us consider the iterative procedure

3.16a) feet - 4 RE-(G 1)1 Hoof - Hf 2H.1 ,
.4

3.16b) f(-1) - 0 . f(0) - 1 f1) - 0

3.18a) g(-1) - -aD_ /2 , g(0) t 0, g(1) -a +/2.

Quite clearly, the arguments above show that there is an

C I C o and, for all c Z e ) £o this malti-point problem possesses a unique solution

-11-
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which is continuous in c and 1.. Thus we have verified all the opening remarks of this

section.

4. Remarks

We conclude this analysis by making a few observations on the significance of the

result established in the previous section.

We have studied special solutions of the Wavier-Stokes equations for a fluid

contained with two infinite parallel planes each rotating with a constant angular velocity

Ak(k - +1) . The centers of rotation may or may not lie on the same axis perpendicular

to the planes.

in either case we are led to a system of ordinary differential equations which

contain (as a subset) the classical equations of von Karman 19] and Batchelor [2] for

special axi-symmetric flow about a common axis. In particular, in this classical case

studied by von Karman and Bathelor, if there are such special solutions, they are never

isolated solutions when considered with the scope of the full Navier-Stokes equations. In

the case of "off-centered" rotation there are many unanswered questions. However, we have

shown that (contrary to most intuitive ideas) in the case of "large" viscosity, there are

solutions and they are never isolated. While the underlying basis for these anomalies is

not completely understood, we believe it is related to the fact that in this unbounded

-Idomain the velocities at large r are great.

It is also worth observing that similar results can be established in the case of the

flow of a Newtonian fluid between rotating porous disks and C > > 1. In this case, the

only change in the problem is in the boundary condition (1.14a). It is an easy matter to

modify the arguments of Section 3.

* SVP KRR/jgb
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